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ABSTRACT

A detailed description is presentéd of the behavior of
a sonic boom shock wave near the sonic cutoff altitude, at
this altitude the local sound speed is equal to the aircraft
speed. The analysis being based on a model atmosphere in
which sound decreases linearly with altitude. It is shown
that existing theories using geometrical acoustic ray tube
concepts do not correctly describe the situation near cutoff.
As the shock first propagates away from the aircraft its
strength decreases. However, as it approaches a region
where the flow behind the shock is transonic the pressure
jump across the shock increases, despite the fact that the
Machnumber is decreasing. The pressure jumpincrease is
caused by accumulated disturbances behind the shock which
are unable to propagate away in this transonic flow region.
When the flow behind the shock is fully subsonic the pres-
sure jump again decrecase, the shock finally ending, at zero
strength, embedded in 2 compression wave. A very inter-
esting result is that in the vicinity of the altitude at which
the shock disappears, compressionsignals from the aircraft

arrive ahead of the bow wave.
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CHAPTER I

INTRODUCTION

The purpose of this study is to determine the behavibr of the
sonic boom shock wave when it arrives in the neighborhood of the sonic
cutoff altitude. At this altitude the local sound speed is equal to the
aircraft speed. This occurs below the aircraft for low supersonic Mach
number (1 < M< 1.2) flights; and is due to the fact that sound speed de-
creases by about 20 percent with increasing altitude over a range of 0 to
50, 000 ft.

The approach used here depends strongly on acoustical concepts
for the following reasons:

(1) The nonlinear theory developed by Whitham (Refs. 1, 2) is, for
the most part, inapplicable for describing details of the present problem
(this will be discussed in the body of the report).

(2) Many of the mathematical equations describing the location
and properties of the disturbance wave fronts can be given explicitly for
the case in which sound speed varies linearly with altitude (Refs. 3, 5).
Furthermore, this model of the atmosphere gives an accurate description
of a standard atmosphere and it also permits an adequate description of
all relevant physical phenomena.

(3) The boom is quite weak in the regions considered, having a
pressure ratio, Ap/p, of order .001. Therefore it is slightly more than
a sound wave.

(4) It is quite important to give the shape of the shock wave and its
location relative to the ambient atmosphere. Satisfactory results have been
obtained for shock location techniques (Refs. 3,4, 5) which are based either
on acoustical ray or wave front tracing.

We shall assume in the remainder of this report that the boom was
caused by an aircraft in straight horizontal flight, and that the sound speed
decreases linearly with increasing altitude between the ground and 35, 000 ft.

In addition, the effects of winds are neglected.



As a shock wave propagates through a '"standard'' atmosphere it
goes through various phases depending on its inclination and the incoming
flow Mach number. If we locate a reference coordinate system on the
shock we notice that the incoming flow has a constant velocity, equal to
the aircraft velocity, but a Mach number which decreases with decreasing
altitude. As we move down the shock, toward the ground, it becomes
vertical near the sonic altitude. We define the initial phase, Region 1 of
Fig. 1, to be where the flows both ahead of and behind the shock are super-
sonic. Here, except very near the bottom end of Region 1, the theories
developed by Whitham, Refs. 1,2, and extended in Ref. 4 are applicable.
In Region 2 (Fig. 1) there is supersonic flow upstream of the shock and
subsonic flow downstream. Here again, except in the vicinity of the
boundary between Regions 1 and 2, the theory of Ref. 4 is applicable.
Therefore the theory of Ref. 4 gives an adequate description of the shock
strength except for those situations when the flow behind the shock is near
sonic. In Region 3 (Fig. 1) there is no shock. It will be shown that here
there is only a series of compression waves similar to those occurring
below a subsonic aircraft.

Of interest in these considerations is the pressure ratio, Ap/p,
across the shock. As we move down through Region 1 the pressure ratio
decreases as predicted in Refs. 1,2,4. However, very near the end of
Region 1 the pressure ratio starts to increase, despite the fact that
the incoming flow Mach number is decreasing. This behavior is not pre-
dicted in Refs. 1, 2, 4; it is, however, indicated in an analysis by Moeckel
in Ref. 6. A technique similar to, but simpler than, Moeckel's is developed
later in this report. Lighthill, Ref. 7 page 317, also mentions (without
proof) that the pressure ratio increases as the shock approaches the tran-
sonic (behind the shock) region. This pressure increase is caused by two
complimentary phenomena. First there is a focusing of the wave energy
emitted by the aircraft; one can see in Fig. 2 that many pressure wave
fronts simultaneously arrive in this region. Second, in the transonic
region behind the shock both the characteristics and the shock itself are
nearly vertical. Therefore pressure disturbances created by the shock

propagate upwardand downward, all remaining inthe immediate vicinity of the



shock. These tend to accumulate and give rise to higher than expected
overpressures.

In Region 2, where the flow behind the shock is subsonic, the
complete flow field ahead of and behind the shock is quite complicated.
The major cause for this complication is the fact that in the lower part
of this region disturbances, caused by the aircraft, arrive before the

bow wave; i.e., there is a compressién field in front of the bow shock.

However, since the shock is formed (or ends, depending upon how you
consider the situation) in this compression field its strength here is
quite small, tending to zero. The overall pressure increase here is due
to the combination shock plus pressure field.

Below Region 2, in Region 3, the flow is everywhere subsonic.
Here there is no abrupt pressure increase and hence no booin, the pres-
sure is spread out into a continuous rise. What is experienced in this
region is a loud rumble such as would be caused by a subsonic aircraft.

In Chapter II relevant acoustical equations and a description of
the flow field, based on these equations, is presented. It is shown how
the subsonic flow of Region 3 (Fig. 1) is connected with the supersonic
flow at higher altitudes. In Chapter IIl a theory paralleling that of
Moeckel (Ref. 6) is presented. We show here that the pressure jump
across the shock can increase while the shock Mach number decreases.
In Chapter IV some extensions to the acoustical theory are given.
Finally, in Chapter V the results are reviewed, and the lateral propaga-

tion problem is discussed.






CHAPTER 11

CHARACTERISTICS, WAVE FRONTS AND RAYS

II.1 ACOUSTIC WAVE FRONTS AND RAYS

It is shown in Appendix A, Eq. (A8), that characteristic surfaces
for unsteady Eulerian flow equations satisfy the partial differential

equation
b, + U, by, tanNéyx; byx; =0 (11.1)

We will now show that this is also the equation for the acoustic wave fronts,
and therefore that the acoustic wave fronts are characteristic surfaces.
We will also show that for steady supersonic flows Eq. (II.1) can be reduced
to the equation for the Mach lines. This relation between the acoustic
wave fronts, which exist independent of the flow speed, and the supersonic
Mach lines will be used in Section II.3 to connect the flow in Regions 2
and 3 of Fig. 1.

At any time, t, ¢(t, xi) = 0 gives the location of the characteristic
surface in cartesian x; =X,y, 2z space. At time t+ At the surface will be
at ¢ (t+ At, X, + niAN) = 0, where ni(x,y, z) is the direction cosine of the
surface normal and AN(x, vy, z) is the perpendicular distance between
cb(t,xi) = 0 and ¢(t+At, x. + niAN) = 0. Expanding the latter equation about

(t, xi) leads to

AND ¢y + At = 0

or
¢ ¢
‘fif =_ndt>- S S (IL.2)
i N by i
where we have used the definition of n,
n, = ¢Xi /\/¢Xi ¢xi (1I1.3)



Substituting Eqs. (II.2) and (II.3) into (II.1)

%1;— - u. n, = +ta (1I1.4)
Equation (II.4) shows that the characteristic surface moves at sound
speed relative to the local flow, in a direction normal to itself. This,
however, is exactly the definition of the acoustic wave fronts, therefore
the characteristic surfaces given by Eq. (II.1) are also acoustic wave
fronts. Since we are considering disturbances which propagate outward
from some initial point Eqs. (II.1) and (II.4) will be taken with the + sign
in the remainder of this report.

The equations for acoustical rays, along which the wave fronts
propagate, have been derived in Refs. 3 and 4 and will not be rederived
here. For the special case of linear sound speed variation the ray and
the wave front equations can be solved exactly; see, e.g. Refs. 3 and 5.
Solutions will be given here in terms x, z (horizontal, vertical) coordinates
since we will be considering flow behavior in the vertical plane containing
the aircraft. (A discussion of lateral propagation effects will be presented

later in the report.)

Ray Equation

a \/ a'?2
x=-—U(T—’r)+E- tan e % sec?e -(;) (I1.5)
Wave Front Equation
a JZa' a'?2
x=—U(T—T)+E Y coshk(T-—T)-—(-a——) -1 (I1.6)
where a' =a -k (z —-h) (I1.7)

The last equation gives the linear variation of sound speed a' versus
altitude z, in several of the equations involving rays or wave fronts we
will use a' instead of z, they are simply related through Eq. (II.7); a is
sound speed at aircraft altitude h; k (.004 sec_1 for a standard atmos-~
phere) the sound speed gradient. 7 is the time when the disturbance

was created, T is time measured after 7, ¢ is the initial ray angle measured



positive downward from the horizontal axis.

These equations have been written in a coordinate system fixed
with respect to the aircraft, which is locatedat x = 0, z =h and is
headed along the positive x direction. In this coordinate system the

wave front differential Eq. (II.1) becomes

dp-Ud +a'No? +2 =0 (IL.8)

X

The above Eqs. (II.5)-(11.8) are linearized in the sense that small
velocity and sound speed perturbations, caused by the aircraft, are
neglected. However, the variation of sound speed with altitude is retained.
In Whitham's original paper, Ref. 1, the perturbations are included but
sound speed variation in neglected. Since we are mainly interested in
the acoustic cutoff problem we must retain the sound speed variation with

altitude.

II.2 FLOW FIELD DESCRIPTION BASED ON ACOUSTIC WAVE FRONTS

In Figs. 2a and 2b we have drawn several wave fronts as given
by Eq. (II.6). The first thing to be noted is that these wave fronts form
an envelope above and below the aircraft. In addition the envelope below
the aircraft has a cusp at the sonic altitude and is reflected upward
Because of the density of wave front lines the bow wave construction is
given in Fig. 2a, and the reflected wave after the cusp in Fig. 2b. The
equation for the wave front envelope can be found by differentiating Eq. (11.6)
with respect to 7, and setting dx/dr = 0. It is most clearly presented by

letting T —7 be parametrically dependent on z or vice versa:

U2 2 U 2
cosh k) = —or * ((% - 1)((-;.) - 1) (I1.9)
or 1 —-1
.Z_={cosh kX - »\/1-(%)z sinh kx} (I1.10)

where



We will only consider wave fronts below the aircraft, therefore
initially the minus sign is taken in Eq. (I1.9). As we move downward
both \ and a' increase, as indicated in Eq. (II.10). At the altitude
corresponding to a' = U the square root in (I1.9) vanishes and from then
on the plus sign is taken. As \ continues to increase a' starts decreasing,
we are now on the reflected shock front, Fig. 2b. For every value of z
and A\ the x coordinate of the shock front is found from Eq. (I1.6).

For the purpose of some later discussions we take a brief digres-
sion here. The basic, steady flight, problem which we are considering
is time invariant. Therefore the time parameter A\ =T ~ 7 is actually
only a characteristic parameter which is used only to identify different
characteristic surfaces. KEquations (II.9) and (I1.10) identify z and \ along
the shock front. These equations consider the flow at time T; for each
altitude z on the shock front there corresponds a wave front which
originated at the flight path at time 7. Therefore Eqs. (II.9) and (I1.10)
along the shock front relate z and 7 if we hold T fixed. If, however, we
hold 7 fixed and assume T varies (T > T) these equations give the altitude
of the ray which left the flight path at time 7 and at angle ¢ = 90° - yu,
where u =sin_l (1/M) is the Mach angle. Therefore Eqs. (II.9) and (II.10)
can be used along the ray ¢ =90° —u. In general, for any ray leaving at
angle e the altitude z given as a function of time T after departure is

1 -1
—3——— = {cosh kX — sine¢ sinh k)\} (11.11)

Although Eqs. (II.5) to (II.10) are based on linearized theory a
considerable amount of information can be obtained from them. In fact
they contain the essence of the problem. First the bow wave, represented
by the envelope of the wave fronts, has associated with it a reflected
shock wave and therefore in a small region near the cutoff altitude there
are two shocks very near to each other. These shocks being caused by
similar signals are approximately the same strength. (It is doubtful
that the reflected shock actually exists since the flow behind the bow shock is
subsonic near the sonic altitude. The pressure disturbances overtake
and merge with the bow shock resulting in a reinforced bow wave).
Therefore measured overpressures here would be about twice the value

predicted across the single shock bow wave.
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Next, a close examination of the acoustic wave front and bow
shock construction will reveal that there are segments of wave fronts
in front of the bow wave. This situation occurs just above the separating
line between Region 2 and 3 of Fig. 1, and is seen in Figs. 2b and 3.
Since each wave front represents a pressure signal, in this region the-
pressure starts to build up continuously just prior to the jump associated
with the shock wave arrival.

As long as the sonic altitude (a'= U) is above the ground, parts
of wave fronts will extend into the region ahead of the bow wave. We
say ''parts' for the following reason: At each point on the flight path dis-
turbances propagate along rays in all directions. T hose rays (Eq. (IL.5)).

which leave at angle e, , = 90° = p carry the wave front segments which

merge to form the envr\glope shock. There are also rays leaving at an
angle € > €,/ (Fig. 3) which, due to refraction, become tangent to the
ground and then bend upward. Any ray leaving at an angle greater than
€ runs into the ground, we will consider the pressure signal ended
there. Therefore sections of wave fronts corresponding to angles be-
tween €, and € will continue propagating; it is just these sections which
get in front of the bow wave.

If we draw a sequence of wave fronts and locate where the ray
corresponding to Eg meets each wave front we get the dashed line curve
shown in Fig. 4. No direct signals from the aircraft can get ahead of this
"signal cutoff'' curve. Figure 4 is a scale drawing corresponding to a
Mach 1.1 flight at 30, 000 ft. Notice that the entire cutoff phenomenon
is quite localized, within 1000 feet in the x direction and about 3, 000
feet in the z direction.

Pressure transducers located at altitudes a,b, c, as shown in
Fig. 4, would indicate readings shown in Fig. 5. Upstream of the ''signal
cutoff' curve and the bow wave there is no disturbance. At altitude a an
ordinary '""N" wave would be indicated by the transducer. In Fig. 5b the
transducer would first see those acoustic pressure waves which arrive
before the bow shock. Here the pressure builds up gradually until the
shock arrives then there will be a pressure jump. Finally in Fig. 5c the
transducer is in the subsonic region and its reading would be a continuous

pressure buildup with no jumps.



II.3 THE WAVE FRONTS AS SUPERSONIC CHARACTERISTICS

As mentioned in the previous section the problem of a steady
horizontal flight in an atmosphere which varies only in the vertical
direction is time invariant. That is, the flow field surrounding the air-
craft is always the same. Let us now consider the characteristic Eq. (II.1)

for a steady two-dimensional flow:
ud +wo +a \/¢2x+c|>zz =0 (I1.12)

On any surface ¢ (x,z) = const

o = - = b (I1.13)

Substituting (II.13) into (II.12) and solving for dz/dx

dz _ -uw = '\/;z+ w? - a? .14
dx az = u? (I1.14)

which is the familiar (Ref. 8) expression for the characteristic slope in
two-dimensional supersonic (u? + w2 > a?) flow.

This relation gives another clue as to the flow behavior in the
sonic transition region and the subsonic to supersonic flow connection.,
In the subsonic region (Fig. 6) the wave fronts, all carrying pressure
signals, propagate as in an ordinary subsonic flight. However these
same wave fronts extend upward into the supersonic region where they
correspond to ordinary supersonic characteristics. In fact, in the
supersonic region they are somewhat like a Prandtl-Meyer type com-
pression wave. (The analogy with the Prandtl-Meyer flow is for con-
ceptual purposes only; one reason for a difference would be the nonuniform
upstream flow).

| In the compression region above the sonic line the flow is the same

as that past a concave wall as shown, for example in Fig. 4.7 a,b on page
96, Ref, 9. Actually the bow shock outlined by the Prandtl-Meyer type
compression is created by compression signals refracted from the sub-
sonic region below. This is different from the bow wave at higher altitudes

which is formed by compression signals directly from the aircraft. Since
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the shock wave at its very end is slightly more than an enhanced charac-
teristic it is quite weak and the boom strength is therefore small. The
overall pressure increase, however, is caused by the shock plus the
compression wave fronts upstream and downstream of it; therefore the

total pressure rise can be somewhat greater than that across the shock

1I1.4 COMMENTS

The results given in the previous sections are based on wave
front analyses. In regions where rays approach each other and form an
envelope the ray tube theory of geometric acoustics is inapplicable. For
our problem the free stream sonic line is an envelope, or caustic, of
those rays leaving the aircraft at an angle ¢ = 90° —u. (This result is
classical and is discussed in several texts, e.g. Ref. 10 page 318, and
Ref. 11 pages 141, 159). One of the requirements for application of
geometric acoustics is that the flow field can have only slow variation
along the ray. However we have seen that within a small domain about
the cutoff region there are rather rapid changes in the pressure, for
example. The major difficulty associated with a quantitative description
of this problem is that the acoustic disturbances build up to change the
flow field and the propagation properties. These changes in turn affect
the disturbances, and it is this interplay of cause and effect which is so
difficult to determine. The classical solutions to these problems in
linearized optics are obtained by reverting to the wave front formulation
as opposed to the ray tube formulation. This is just what we have done.

In Fig. 6 is a drawing of the flow field in the transonic interaction
region. The sonic line for the true physical situation does not remain at
a fixed altitude as it would for a linearized, acoustic solution. In addition
streamlines are deflected upward and the shock, when it is formed within

the compression region, probably bends slightly upstream.
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CHAPTER III

THE REGION OF INCREASING SHOCK OVERPRESSURE

III.1 OBLIQUE SHOCK THEORY

It was mentioned at the end of Section II.3 that the shock, near
its termination in the Prandtl-Meyer like region, can cause only a
small pressure jump. We will show here that the region of increased
overpressure occurs at the end of Region 1 of Fig. 1. Recall that the
criterion for separating Regions 1 and 2 is that in 1 the flow behind the
shock is supersonic while in 2 it is subsonic. We see then that in order
to evaluate this criterion oblique shock relations are required.

Moeckel (Ref. 6) showed that as a shock propagates into a region
of decreasing Mach number the pressure jump across the shock decreases
and the shock angle (with the horizontal) increases. This behavior con-
tinues until the shock angle gets close to that angle at which subsonic
flow occurs behind the shock, then the pressure jump starts to increase
while the Mach number continues to decrease. Apparently the shock angle
and Mach number vary in such a way as to cause the increasing pressure
jump. Unfortunately, the method of analysis does not help explain this
change in behavior, however an explanation based on physical reasoning
is given in Section III.3. Lighthill (Ref. 7) states a similar finding but he
does not give any details. Quoting from his paper: ''"The author attempted
a more exact theory of the refraction of a shock entering a region of
parallel and otherwise undisturbed steady flow at monotonically decreasing
supersonic Mach number, which indicates that such an increase of strength
occurs until a state is reached in which the flow behind the shock is sub-
sonic; after this the refraction theory does not apply, but the shock pre-
sumably weakens''.

The method developed below, which is essentially the same as
Moeckel's, requires the flow behind the shock to be supersonic. Referring

to Fig. 7, a shock is assumed to be propagating into a nonuniform region,
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as it crosses each (horizontal) streamline a reflected Mach wave,
separating Regions 3 Iand 4 of Fig. 7, is induced. We permit pressure
variations across streamlines, such as would occur in the Earth's
atmosphere, however we assume that the pressure ratio across the

streamline remains constant:

P2 - Py - (I11.1)

Ps - Ps Py P3P -Ps P3 (I11.2)

where we have used Eq. (II1.1).

Pressure ratios in Eq. (I11.2) can be expressed in terms of Mach
numbers and angles (M,, 8,) and (M,, 6,) by using Eqs. (128), (132), (139a),
and the first two terms on the right hand side of (151) in Ref. 12. After
making these substitutions let M; =M, + AM and 6, = 6, + A8 and solve
for A8/AM." The resulting expression is

A8 _ ~M(sin® 8+ A.C)
AM = 2M2s5in29 + B.-C (IT1.3)
where
A = {sin26+cot9(y+cos 28)}/D
M2
B = s(M?cos 28 + csc? 8) (1+-§_ (y+ cos 28))
M2
+Mzsin26(—2——sin29-cot8) /D
C=(2yMtsin? 8 —y+ 1) MZ (M2 =1)" !
M2 g 2 2
D = {1+—2——-(Y+1 - 2 sin? 9)} +{IV2I sinZB—cote}

M, 8 =M,,8,

M; is given in terms of M and 8 in Eq. (132) of Ref. 12.

15



Ii1. 2 A SAMPLE COMPUTATION

In order to compare different theories of shock strength near the
cutoff altitude we have taken a sample flight, M =1.1 at 40, 000 ft. in a
standard atmosphere and have computed shock overpressures using the
computer program described in Ref. 13. For this flight condition the cutoff
altitude is about 12, 500 ft. At 20,000 ft. we determined M and 0 to use as
initial conditions for solving the differential Eq. (IIIL. 3),

The results of this computation give the shock Mach number and
inclination. ¥rom these, using oblique shock relations, we determined the
pressure jump across the shock. However, these results (in fact this whole
approach) are based on two-dimensional theory and are not corrected for the
geometric axially symmetric spreading of the shock front. For a uniform
atmosphere the above theory would predict a constant shock angle and Mach
number, Actually since the shock is spreading away from its source it
would weaken by (distance)'?’/4 according to Whitham's theory, Ref. 2,

Eq. (19). Therefore the pressure jump results obtained by integrating
Eq. (III. 3) are '"corrected' by including an attenuation proportional to

3/4

theory of Ref. 4 with those obtained by the present oblique shock approach.

(distance)” In Fig. 8 we compare pressure jumps obtained by the
The numbers in parentheses are local pressure jumps; i.e., (pressure
ratio, Ap/pX(local atmospheric pressure).

It is seen that the oblique shock theory, when carried to its limit of
applicability, predicts pressure jumps about three times those of Ref. 4;
however, we believe that an increase of order two times, as indicated at
the bottom of page 8, would be more correct. This situation should be
further discussed. First, the shock here is nearly vertical; for the above
problem it was 87 degrees from horizontal. The ground reflection factor,
therefore, should be near 1 instead of 2. Second, the theory is based on a
mathematically perfect atmosphere. A slight variation in temperature
could radically alter the whole picture; for example, a temperature
increase of about 4 degrees would change the altitude of the pressure peak
(in Fig. 8) from 13, 700 to 15, 000 feet. This sensitive dependence on local
meteorological conditions is characteristic of shock behavior when its
Mach number is very close to 1, say of order 1. 005 as in the above

problem; therefore, along or near the ground where temperatures vary

1k



haphazardly, the only thing we can say is that the shock, if it exists at all,
is very nearly vertical and reflection factors of 1 or even less are to be
expected.

I11. 3 COMMENTS

The theories of Refs, 2 and 4 do not use oblique shock relations.
They consider a shock propagating down a ray tube with the shock front
normal to the sides of the tube and hence use normal shock relations.

For this approach the condition of the flow behind the shock; i.e., whether
it is subsonic or supersonic, is disregarded. Whitham's original paper,
Ref. 1, requires supersonic flow everywhere since that theory is based on
properly locating the characteristics. And the ray tube theories, since they
do not explicitly consider the shock angle, cannot completely describe some
of the flow properties obtained by the oblique shock approach.

For the method described in this chapter, when the flow behind the
shock approaches a Mach number of unity the reflected characteristics
(Fig. 7) become nearly vertical. Since the incoming shock is also close
to being vertical all the reflected pressure disturbances tend to remain
in a vertical plane in the vicinity of the shock. Note, the pressure in-
crease p5/p1 must match that across the shock p3/p2 plus that of the re-
flected wave p4/p3. Therefore there is a pressure buildup in this region.
When the flow behind the shock is subsonic the pressure disturbances
propagate away in all directions, hence this localized buildup cannot occur.

It seems that the ray tube approaches, Refs. 2 and 4, are valid
when the flow behind the shock is either subsonic or supersonic, except
for a region where the flow behind the shock approaches Mach 1. The
regions of validity occur when the disturbances created by the shock are
carried away by the flow behind the shock. In Ref. 6 Moeckel gets an
analytic representation of the shock Mach number and angle at which the
pressure stops decreasing and starts increasing with decreasing Mach
number. However, this relation is rather involved and we have not been
able to determine its physical significance, other than the reasoning given
above.

The breakdown of ray tube theory is very similar to a situation

described in Ref. 15. Here a shock propagating down a channel (or tube)
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was considered; and a disturbance, such as a small change in tube area
was introduced. When the flow behind the shock was either subsonic or
supersonic a linear small disturbance theory was adequate for describing
flow perturbations. However, when the shock strength was such that the
flow behind was transonic the linear approach was inapplicable, It was
shown that in this transonic case the pressure disturbances build up and

sometimes coalesce to form a second shock.
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CHAPTER 1V

IMPROVEMENTS TO THE ACOUSTIC THEORY

IV.1 A PERTURBATION SOLUTION TO THE WAVE FRONT EQUATION

Because of the complicated nature of the flow in the cutoff region
it is practically impossible to obtain an exact solution there. Further-
more, in light of the discussions given in the previous two chapters
practically all of the flow properties are qualitatively known. Also, any
attempted full flow field solution to the present idealized problem would prob-
ably be made worthless by adding some realistic parameters: wind variation,
aircraft maneuvers and temperature inversions. We will therefore pre-
sent in this chapter two techniques which improve the acoustic results of
Chapter II.

The first technique starts with the partial differential Eq. (I1.8)
for the wave fronts. However, we will alter the sound speed definition:

- * 2 2 —
<I>T Uc?bx+a No2 + o =0 (1Iv.1)

x z
The augmented sound speed is defined as follows:
%k t
a =a (l+n(s)) (IvV.2)

Where s is distance along a ray and n (s) is an increment added to the
sound speed in order to better represent a true shock propagation speed.
This increment is induced by a finite amplitude source as opposed to the
point source used previously. For simplicity we will use Whitham's
"far field" approximation, n(s)~ s 3/4. Referring to Eq. (3.12) of

Ref. 4 and Eqs. (4.3) and (3.9) of Ref. 13:

1 ! + 1 Ap
a (1+ =a (1+ Yr = 2P
(1+ m) ( Ty 5 )
. _Y+tl Ap _y+1 K
. n= 4Y ) = 4Y 5374 (IV.3)
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M3/4 . L3/4 .
where K = 7 174
(M - 1) .

VF
FR.

M = aircraft Mach number
L
VF

FR = fineness ratio

aircraft length

volume factor

We will obtain a perturbation solution to Eq. (IV.1) of the form

®(T,x,2) =0 (T, x,2)+ ¢ (T, z) (IV.4)

a [2a' a' 2
where ¢ = x + U\ - T 5 cosh k\ (3.—-) -1

AN=T-r7, a'=a—k(z—h)

The function ¢ is the acoustic wave front, given in Eq. (I1.6). If we
equate dto zero we see that the perturbation term ¢ is an increment
added to the'x coordinate of the acoustic solution. We relate ¢ to the
sound speed perturbation, m, by substituting (IV.4) into Eq. (IV.1),

retaining first order terms

1
a'{cosh k \ -2
a

' .
a mn sinh k\ -
YTt TSR kN A P 0 (IV.3)
\/——- coshkA - (—) =1
a a
The characteristic equations for Eq. (IV.5) are
1
' a
dz ) a (cosh k\ - ?) (IV.6)
dT sinh k\
dy a'm sinh kX
ey _ n
I = (IV.7)

JE— cosh k\ - (—a——)'2 -1
a a

Equation (IV.6) is the same as the characteristic equation that
would be found from the original acoustic Eq. (II.8); it is, in fact, the

equation for the ray locus. This can be seen by eliminating \, using
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Eq. (I1.11); the resulting differential equation is the same as the one
corresponding to Eq. {4) of Ref. 3,

The solution to Eq. (IV.7) can be written formally by integrating
with respect to T. Since the characteristic curves, given by Eq. (IV.6),

are rays, the integration is along a ray:

T
g == ( —2 msinhk) aT'

w Za-’ a1 2
T \/-é,-_ COShk)\"'('—é—) -1

The above integral can be considerably simplified by substituting N=T -7

and eliminating a' by means of Eq. (II.11):
A
¢ == a secc ( n(s)dx' (IvV.8)
0

Therefore the improved wave front equation is

®(T,x,z) =0

A
1 'Z '
or x=—-U)\+% \/E:'— coshk)\-—(%)—l +aseceS\n(s)d)\

0 (IV.9)

In the integral term of Eq. (IV.9) distance, s, can be found by

integrating

ds =dx '\/1+(-€dl-§)z

along the ray, using Eq. (II.5) to determine dz After carrying out this

dx
integration x and z can be eliminated in terms of ¢ and \ using Egs. (I1.5)

and (II.11). The resulting expression is

g = 2sece J o sin—l [tanhk)\-—sine ]
k 1 - sin etanh kX (IV.10)
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By fixing a value of the time parameter \ a specific wave front
is identified by Eq. {(IV.9). There is one difficulty, however, due to
the fact that the correction term involves an integration along a ray and
each point on the wave front corresponds to a different ray. The x,z
coordinates for any wave front, A, can be determined as follows: For
any altitutde z Eq. (II.11) can be used to determine the corresponding e,
this identifies the ray. With ¢ known we can use Eq. (IV.10) in (IV.9) to
solve for the x coordinate on the wave front.

The bow shock front is determined by finding the envelope of the
improved wave fronts, Eq. (IV.9). A parametric representation, like
Eq. (I1.9), between z and \ along the envelope is obtained by taking the
partial derivative of Eq. (IV.9) with respect to X\:

R [ T CEE

(IV.11)

In determining (IV.11) the angle ¢ was eliminated by setting cos ¢ =a/U = 1/M.
This relation, in accordance with the discussion leading to Eq. (II.11), im-
plies that those rays, carrying wave front segments which form the envelope
or shock, leave the aircraft at angle ¢ = 90° ~ y, where p is the Mach angle.
The cutoff altitude for the improved shock front is found from the vanishing

of the square root in Eq. (IV.11); that is, when

U = = a' (1+mn)

We see, then, that the cutoff altitude occurs when the "improved" pro-
pagation speed equals the aircraft speed. This differs from the acoustic
theory of Chapter II, there the cutoff altitude was where the local atmos-
pheric sound speed equals the aircraft speed. The above definition for

the cutoff altitude is in agreement with Ref. 4 Eq. (3.8) where it was shown
that the shock front became vertical (which, for the present problem, is

equivalent to cutoff) at that altitude where the shock velocity equals the

aircraft speed.



It is not difficult to estimate what effect the improvement "n"
will have on the acoustic solution, given in Eqs,. (1I.5)and (I11,6). First,

the x coordinate of the shock is lengthened by

A
a sec € 5 n(s)dh ~ a seces navkw 1000. 10.'3 . 100
0

= 100 ft.

That is the x coordinate of the shock will be about 100 ft. upstream
of the acoustic wave front envelope. To get this estimate we used
n ~ 10-'3 since it is of order Ap/p (see Eq.IV.31);also the travel time
X is about 100 sec., and sec e ~1.

The change in the z coordinate can be estimated from the cut-

off relation given in the previous paragraph:

a = a + k (z=h) = U (l-n)

Let a = 1000 ft./sec., U = 1100 ft. /sec., k = .004 sec.—l,
-3
h = 30,000 ft., = = 10
. _ a-—u _
acoustic cutoff z = h + — = 5,000 ft.

improved cutoff =z

h +f—f€_5 +_‘11§_ = 5,250 ft.

That is the cutoff altitude is about 250 ft. higher with the improved

approximation.
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IV.2 AN IMPROVED WAVE FRONT DETERMINATION*

The technique described here permits a more accurate estimate
of the shock shape while using the acoustic results obtained in Chapter II.
We know that the disturbance propagating from the aircraft travels at a
speed greater than the free stream sound speed (see, for example, Eq. 4
of Ref. 2). Therefore the basic idea behind this approach is to prescribe
a sound speed, varying linearly with altitude, but which permits a more
exact description of the true propagation speed. Since we will keep the
linear sound speed variation,all the wave front and ray equations used in
Chapter II can be retained.

The ''sound speed", A, used here is (see Eq. (II.7) for comparison).

A= qa=-pB(z-h) (IV.12)

where h is aircraft altitude, and the two parameters o and 3 are to be
determined. First, a is determined by having the slope of the wave front
envelope equal the slope of the bow wave at the aircraft. The bow wave

slope, tan 0, , is known in terms of the aircraft Mach number and nose

h
angle. At its origin (z =h, x =X =0 in Eqgs. (I1.6) and (I1.10)) the wave

front envelope slope is, in terms of & instead of a,

gf‘; = 2 (IV.13)
U4 - o

Equating the bow wave and the envelope slopes

a

— =tan 6
Ué - o h
or o =U sin 6 (I1V.14)

h

(If the bow wave is detached neither this nor any of the '"uniformly valid"
solutions are applicable near the aircraft. In this case the shock slope
would have to be matched at some distance from the aircraft, where

Whitham's theory is applicable).

ok
This method of improving upon acoustic theory results was developed
by David C. Chou, a graduate student at MIT.
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At the ground we are far from the aircraft and well into the sub-
sonic region of Fig. 1. We therefore assume that the wave front pro-
pagation speed here is equal to sound speed. Therefore the parameter

B is found by setting A = ag at z = O:

A=og+Bh=a
o+ f g

or B = gh = & o (IV.15)

where ag = sound speed at the ground.
We are now able to use all the equations given in Chapter II after

making the following substitutions:

substitute A for a'

a for a

B for k

IV.3 NUMERICAL RESULTS

Since the approach described in Section IV.2 is easy to evaluate
we carried out a computation for a Mach 1.1 aircraft flying at 30, 000 ft.
(In order to have an attached shock a nose angle of 1° was assumed).

The results are given in Fig. 9. Also given in Fig. 9 are results for the
same flight conditions as computed by acoustic theory (Eqs. (II.5),
(I1.6)), and by the Sonic Boom Computer Program described in Ref. 13.
The latter results are given by heavy dots.

We see that the SBCP data agrees, for the most part, with the
acoustic results. The theory of Section IV.2 predicts perturbation effects
which are too large. From estimates derived at the end of Section IV.1
the difference between improved and acoustic theories should be of order
200 ft. in cutoff coordinates. The theory of Section IV.2 predicts differences
of order 1500 ft.
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CHAPTER V

SUMMARY

V.1 A REVIEW OF THE FINDINGS

The results of the previous sections enable us to describe the
shock wave behavior in the neighborhood of the sonic cutoff altitude.
We have not given a solution to a specific problem. (Although we did
use a special atmospheric temperature model, it is felt that this model
is realistic and the results are quite general.) Rather, we have
presented a considerable amount of evidence based on the theory of
characteristics, acoustical theory, and oblique shock theory. By using
and combining these theories we have been able to present a logical
description of the various physical phenomena in the shock cutoff region.

To review the findings, we see that the shock at first propagates
away from the aircraft in a manner like that described in Refs. 1, 2, 4.
That is, the pressure jump across the shock decreases as it moves
outward. Because {as we have assumed) the sound gspeed increases as
the ground is approached, the shock Mach number decreases. In addition,
due to refractive effects, the shock inclination to the horizontal approaches
90°. As the shock continues moving into the higher temperature region
its Mach number and inclination combine so as to cause the flow behind
the shock to become subsonic, this being determined by oblique shock theory.
None of the above references adequately describe the flow behavior as this
subsonic (behind the shock) region is approached. It was shown in Chapter
III that although the shock Mach number is decreasing, its inclination com-
bines with the Mach number so as to cause the pressure jump across the
shock to increase. This increase, as discussed in Section III.3, is caused
by the tendency of reflected disturbances to remain in the vicinity of the
shock. Instead of propagating away, downstream, they build up inducing

overpressures of order twice those predicted by Ref. 4.
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As we continue down the shock front, into the region where the
flow behind the shock is subsonic, the overpressurés start decreasing
again since the disturbances behind the shock are again able to propa-
gate away. This is borne out in Ref. 14 where an experiment was des-
cribed in which a shock was propagated down a tube which had a heated
base plate. This heating induced a vertical temperature gradient parallel
to the shock front, which had only subsonic flow behind it. For cases in
which the shock reached the base plate the pressure jump across the
shock decreased as vertical distance above the plate decreased. That is
the pressure jump was smaller in the hotter regions.

Continuing further down the shock front we get to a region where
compression wave fronts have arrived ahead of the shock. These fronts
are signals traveling along rays which have entered regions where the
propagation speed is greater than the aircraft speed. There is a definite
limited region, set by the ground the temperature profile and the aircraft
altitude and Mach number, in front of the shock where these signals can
reach. The flow configuration, such as indicated in Fig. 6, is a steady
one, moving with the shock at aircraft speed. The compression wave
fronts, being characteristic surfaces, form a Prandtl-Meyer like com-
pression fan and the shock ends embedded in this fan. Actually it would
be more accurate to say that the shock is formed here, by the compression
signals riging from the subsonic region below.

This description is again in agreement with the results of Ref. 14,
when the base plate in the shock tube was heated enough that sound speed
near the plate was greater than the shock speed. A steady configuration
was attained in which the shock vanished, somewhere above the sonic
altitude, embedded in a compression region which extended upstream of
the main shock front (see Fig. 10 of Ref. 14).

It is believed that the pressure increase across the region of the
combined shock plus compression wave fronts remains fairly constant.

However the pressure jump across the shock alone decreases until it van-

ished completely, from this point down the pressure increase is smooth
with no jumps.
Below this region, where the flow is completely subsonic, the

pressure increase is like that below a subsonic aircraft. There is however,
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one major difference. For a steady subsonic flow the pressure signals
theoretically reach infinitely far upstream. In the present problem the
signals are confined behind a ''signal cutoff' curve. All this, of course,

neglects reflections off the ground and propagation through the ground.

V.2 LATERAL CUTOFF

All the previous discussions considered only the vertical (x, z)
plane containing the aircraft flight path. We will now show that the flow
behavior on either side of the (x, z) plane is essentially the same as that
already described. The physics of the situation is unchanged and all that
is altered is the geometry.

Let us first recall the fact, proven in the Appendix of Ref. 4, that
(in the absence of winds) any ray will always remain in its initial vertical
plane. Furthermore the refractive properties of this ray are set by the
component of the aircraft velocity in this plane.

In order to demonstrate the latter fact consider Eq. (II.11) which
relates propagation time and altitude for any ray leaving at an initial
angle e. Also consider Eqs. (II.9) and (1I.10) which refer to rays in the
x, z plane leaving at angle ¢ = 90° ~ y; rays which leave at this angle carry
wave front segments which form the bow shock. Let us now generalize
the angle ¢ to mean the angle between any shock forming ray and the
horizontal plane. For a vertical plane making an angle w with the x, z

plane it is shown in Fig. 10 that
cos e+ cosw =a/U

or cos ¢ = a/U cos w (v.1)

For the vertical (x, z) plane through the flight path w = 0 and
cos € =a/U. Therefore for any angle w the only change in Eqgs. (II1.9)

and (II.10) is to write U cos w instead of U:
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2 2 2 2
cosh k\ = U co? w J{(Ucosw) _1}{(Ucos;w y _1}
aa a a
-1

2
a'=a {cosh k\ - }1-—- (—U—c%)-s—w) sinh kk} (v.2)

We see then that, as stated previously, the refractive properties

of the ray and the shock front are fixed by the component of the aircraft
velocity in the w plane. Therefore for this case lateral cutoff occurs
sooner in time and at a higher altitude than under the aircraft.

Another way to look at the result (V.2) is as follows: Any wave
front, and hence the shock, always propagates in a direction normal to
its surface (see Eq. (II.4)); also since the rays are normal to the surface,
the front always propagate in the same lateral plane defined by angle w.
Therefore the wave front in any lateral plane sees a free stream flow of
' reses)
the lateral shock propagates through the same type of regions and exhibits

magnitude U cos w. Hence starting at the '"Mach angle" sin”

the same sdrt of phenomena as the shock below the aircraft, already

described.
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APPENDIX A

DERIVATION OF CHARACTERISTIC EQUATION

For completeness, the equations.of characteristic surfaces for
the Eulerian flow equations will be derived here. These equations are

(using the convention of summing on repeated subscripts):

It
o

! =

- YP -0 3 3§ =
pt+uipxi o (pt+ui pXi) 0; 1,j 1,2,3

A characteristic surface ¢ (t,xi), for any partial differential
equation, hag the property that if data are prescribed on the surface
{p(d), P(d) u, (¢)) then the partial differential equation cannot be used to
find values of (p, p,ui) outside of ¢. That is the outward derivative, from
¢, cannot be found and the data cannot be extended from the initial surface.
The given partial differential equation, for such a situation, is essentially
a tangential derivative on the surface.

The direction cosines, §k, for the normal to the surface ¢(t, xi) are

defined as follows:

G ) sk g = gy

(A-2)
where Q = \/¢t2 + ¢,§i ; i=1,2,3; k=0,1,2,3
The normal derivatiove from the surface ¢ is
d _ ) _
an - §k ﬂk— , wWhere x5 =t (A-3)
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Any directional derivative, ay -8—2-1-(—, is a tangential derivative on ¢ if

d

. 9
can be written Frra €. ot tan

k3K = 0; also, any derivative 5% ;

gential derivatives. To prove this last statement consider

d ) _ %0
S T hG m Thiak S

in $1i
i i i*n 9x_ '’
n

3 3
(l'gngn)ékg"*gign 9

n

- £ ) (A-4)

n o0x.
i

0 0
X

5;; + (gign )

By using the above definitions it is easily shown that the term in paren-

theses in Eq. (A-4) is a tangential derivative.

" Therefore, substituting for E)ax— in the Eulerian flow equations we
get !

dp duy
(Eo + gi ui)—dn + p g’i Pl tangential derivatives

dig by dp

- . . . g
(Ep + &,iui) ot 5 3 tangential derivatives (A-5)
(Eo + E.u )—El-E— - X2 (Eg+ E.u )ﬂ)— = tangential derivatives
0 i i’ dn P 07 >i7i" dn

Equation (A-5) is an equation for the normal derivatives of the flow variables
in terms of data which are prescribed on the surface ¢(t,xi). If the sur-

face is a characteristic surface the set of Eqs. (A-5) cannot be solved for
dp dp duj
dn ’ dn ’ dn
equals zero. Taking the determinant and setting it equal to zero

the normal derivatives and the determinant of the coefficients

3
(£ + £,u,) ((Eo+ £;u) —a® (£,6,)) =0
(A-6)
where a® = yp/p
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Using the definition of gk given in (A-2), Eq. (A-6) leads to the following

partial differential equations for the characteristic surfaces:

b, + 1y byy =0 (A-7)

b+ u; bx; ta Ndxi dx3 =0 (A-8)

Equation (A-7) is linear and represents a directional derivative

- . dt _ dxj dxj _ : _
do¢ = ¢t dt + ¢xi dxi provided T = o or —r-=u.. That is, the sur
face ¢ (t, xi) = const. along the streamlines, E%ﬁ_ =u,. Hence the stream-

lines form a characteristic surface for the Eqs. (A-1). However we are
more interested in the characteristic Eq. (A-8), this is discussed in

Section II.
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